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Abstract

Various vibration and noise suppression applications require a high loss factor ðtan dÞ over a wide frequency range.

Homopolymers often do not meet this requirement. However, the damping properties of polymeric composites can be

modulated to achieve this goal. In this paper, we devise a simple finite element based unit cell model to calculate the

effective tan d of a composite as a function of frequency. Using this method, we show that if the relaxation times of the

constituents are properly chosen, a flat tan d response over a wide frequency range can be obtained. Inclusions with

multiple layers are seen to be particularly suitable towards this end.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration and noise suppression applications include building structures under seismic excitation or wind
loads [1], and railways [2] where mechanical vibrations of a wide frequency range are generated. Vibration of
structures for general kind of loads, occur from about 0.1Hz to 10 kHz depending on the size of the structure
[3]. Ideal damping applications should provide a high loss factor tan d (either material or structural) over the
entire range.

To achieve effective damping over a wide frequency range, various methods are used. Active [4] and semi-
active vibration control techniques [5] magnetic vibration dampers [6] and particle dampers [7] can achieve
high damping over wide range of frequencies. However, active damping usually suffers from spillover/
waterbed effects [8,9]. Magnetic and particle vibration dampers have larger weight penalty.

Passive damping using viscoelastic materials is simpler to implement and more cost-effective than semi-
active and active techniques [10]. A US patent shows that a viscoelastic medium with fibres dispersed
throughout eliminates the need for a constraining layer, thus reducing the size and weight of a damping
treatment [11].

As is well known, homopolymers exhibit a high material damping response over a relatively narrow range of
temperature and frequency. Methods used for achieving a wide tan d vs. frequency response include the use of
copolymers, blending with other polymers [12], or inorganic materials [13]. A more recent development is the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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interpenetrating polymer network (IPN) which is a novel class of polymer alloys where two or more
crosslinked polymers are held together by physical entanglements [14]. A particularly interesting member of
this group of materials is the gradient IPN, where a broad tan d over a temperature range of 273–373K has
been reported [15]. It should be noted that a gradient polymer can be treated as a polymer composite with a
large number of viscoelastic phases.

In order to estimate the effective tan d of a polymeric composite, homogenization techniques have been
extensively used. Hashin [16] has given bounds for macroscopic moduli of two or multiphase elastic
heterogeneous materials. Later he extended the analysis to predict the macroscopic behaviour of
heterogeneous linear viscoelastic media [17]. Christensen [18] has also derived analytical expressions for
upper and lower bounds of the effective complex shear modulus of a linear viscoelastic matrix containing
spherical voids or perfectly rigid spherical inclusions. Better estimates of the macroscopic viscoelastic
properties can be obtained by using the Mori-Tanaka model [19] or other mean-field homogenization schemes
[20]. Unit cell techniques used within the framework of the finite element (FE) method [19,20] offers an
alternate route towards determining the effective loss and storage moduli as well as tan d of viscoelastic
composites. Microstructure design for optimal damping performance has been attempted by Yi et al. [21,22]
using asymptotic homogenization techniques.

The first objective of this work is to develop a simple computational technique for determining effective
tan d of a polymeric composite material (given its morphology) from unit cell analysis. Additionally, using the
devised technique we show that by carefully selecting the viscoelastic properties of the constituents, the tan d
vs. frequency response of the composite can be suitably modulated. This aids in realizing the aim of obtaining
a high tan d value over a wide range of frequencies. To this end specially engineered inclusions which
themselves contain a number of layers with varying damping properties are found to be especially suitable.

In this paper performance of the material has been judged only on the basis of its material loss factor.
Maximizing the overall damping performance of a free or constrained layer damping system depends on the
material damping response of the viscoelastic layer [23]. In fact, as shown by Kerwin and Ungar [23], multiple,
continuous or segmented constrained or free viscoelastic layer damping is an effective way of designing
damping treatments. In such treatments the system loss factor depends sensitively on the material loss factor.
However, it should be borne in mind that several situations arise where the maximum loss factor is not the
only design criterion of interest.

The present paper is organized in the following way. Sections 2.1 and 2.2 explains the computational
procedure adopted for solving a viscoelastic initial-boundary value problem using FE techniques. In Section
2.3 we outline the simple procedure adopted for extracting tan d of the composite from a unit cell analysis.
Salient results obtained using this technique on a simple morphology are presented in Sections 3.1 and 3.2.
2. Computational procedure

In this work an initial/boundary value problem (IVBP) has been solved, for evaluating the effective
damping behaviour of viscoelastic heterogeneous materials. Variables of state which are used to assess the
response of material are displacement uðx; tÞ, the stress tensor rðx; tÞ and strain tensor eðx; tÞ. In absence of
body forces the governing equation which has to be solved is

= � r ¼ 0. (1)

Assuming small strains the strain–displacement relations are:

e ¼ 1
2
ð= � uþ = � uTÞ (2)

and the constitutive equation for viscoelastic medium reads

r ¼

Z t

t0

Cðx; t� t0Þ
qeðx; t0Þ

qt0
dt0, (3)

where Cðx; tÞ is the viscoelastic constitutive tensor, t0 initial time, t time of observation, and t0 is the variable of
integration.
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Constraints imposed on the solution by boundary and initial conditions are:

u ¼ u0 on Gu, (4)

T ¼ rTn ¼ T0 on Gt;Gu [ Gt ¼ 0, (5)

where T0 is the applied traction on Gt. On the remaining part of the boundary (i.e. Gu) displacement u0 is
specified, and n is unit normal to the boundary, as shown in Fig. 1.

For tot0,

uðx; tÞ ¼ 0 and rðx; tÞ ¼ 0. (6)

2.1. Incremental form of the constitutive equation

In order to avoid solving a set of Volterra integrals for the FE solution, numerical incrementalization of the
constitutive equation developed by Zocher et al. [24] has been used in this formulation. Use of this numerically
approximated constitutive equation leads to a simple set of algebraic equations. Steps involved in deriving the
incremental constitutive equation are outlined here for the sake of completeness.

The time line is subdivided into discrete intervals such that tnþ1 ¼ tn þ Dt. At the nth and ðnþ 1Þth time
steps the constitutive relations are given by

rðx; tnÞ ¼

Z tn

0

C x; tn � t0ð Þ
qe x; t0ð Þ

qt0
dt0 (7)

and

rðx; tnþ1Þ ¼

Z tnþ1

0

C x; tnþ1 � t0ð Þ
qe x; t0ð Þ

qt0
dt0, (8)

respectively.
Eq. (8) can also be written as

rðx; tnþ1Þ ¼

Z tn

0

Cðx; tnþ1 � t0Þ
qeðx; t0Þ

qt0
dt0 þ

Z tnþ1

tn

Cðx; tnþ1 � t0Þ
qeðx; t0Þ

qt0
dt0. (9)

Here, we define Dr as

Dr ¼ rðx; tnþ1Þ � rðx; tnÞ, (10)
x1

Γt

Γu 

n
T0

u0

x2

Fig. 1. Two-dimensional problem domain.
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and DC as

DC ¼ Cðx; tnþ1 � t0Þ � Cðx; tn � t0Þ. (11)

In the above C is fitted with Wiechert model in the form

Cðx; t� t0Þ ¼ C1 þ
XN

r¼1

Cr expð�ðt� t0Þ=rrÞ, (12)

where the quantity N in represents number of spring–dashpot combinations in the model. Substituting Eqs. (7)
and (9) in Eq. (10), Dr can be expressed as

Dr ¼

Z tn

0

ðCðx; tnþ1 � t0Þ � Cðx; tn � t0ÞÞ
qeðx; t0Þ

qt0
dt0 þ

Z tnþ1

tn

Cðx; tnþ1 � t0Þ
qeðx; t0Þ

qt0
dt0. (13)

Therefore,

Dr ¼

Z tnþ1

tn

Cðx; tnþ1 � t0Þ
qeðx; t0Þ

qt0
dt0 þ DrR (14)

where

DrR ¼

Z tn

0

DC
qeðx; t0Þ

qt0
dt0. (15)

For the plane strain case, in which we are particularly interested,

C1 ¼
E1

ð1þ nÞð1� 2nÞ

ð1� nÞ n 0

n ð1� nÞ 0

0 0 ð1� 2nÞ

0
B@

1
CA, (16)

and

Cr ¼
Er

ð1þ nÞð1� 2nÞ

ð1� nÞ n 0

n ð1� nÞ 0

0 0 ð1� 2nÞ

0
B@

1
CA, (17)

where E1 is the long-term relaxation modulus, and n, the Poisson’s ratio is assumed to be time independent.
In addition, rr ¼ Zr=Er, where Zr are dashpot coefficients and Er are spring stiffnesses of the rth
spring–dashpot combination in the Wiechert model. The rr are referred to as relaxation times.

Eq. (14) can be further integrated in closed form to produce:

Dr ¼ C0Deþ DrR, (18)

where

C0 ¼ C1 þ
1

Dt

XN

r¼1

rrCrð1� expð�Dt=rrÞÞ (19)

and

DrR ¼ �
XN

r¼1

ð1� expð�Dt=rrÞÞ

Z tn

0

expð�ðtnþ1 � t0Þ=rrÞCr
qeðx; t0Þ

qt0
dt0. (20)

Eqs. (18)–(20) form the corner stone of the incremental FE formulation. Note that C0 a constant (as in a linear
elastic analysis) if the time step Dt is fixed.

For the time interval ðtn � Dtpt0ptnÞ the strain rate R is approximated as

qeðx; t0Þ
qt0

’
De

Dt
’ R.
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Now Eq. (20) can be simplified to

DrR ¼ �
XN

r¼1

ð1� expð�Dt=rrÞÞSrðx; tnÞ, (21)

where again for plane strain conditions,

Srðx; tnÞ ¼

Z tn

0

expð�ðtnþ1 � t0Þ=rrÞ ð22Þ

�
Er

ð1þ nÞð1� 2nÞ

ð1� nÞ n 0

n ð1� nÞ 0

0 0 ð1� 2nÞ

0
BB@

1
CCARdt0. ð23Þ

In addition, the Srðx; tnÞ satisfies the recursive relation,

Srðx; tnÞ ¼ expð�Dt=rrÞSrðx; tn�1Þ

þ ð1� expð�Dt=rrÞÞ
Errr

ð1þ nÞð1� 2nÞ

ð1� nÞ n 0

n ð1� nÞ 0

0 0 ð1� 2nÞ

0
BB@

1
CCAR. ð24Þ

2.2. Finite element formulation

In absence of body forces, virtual work rate equation for small deformation can be written asZ
V

d_eTrdV ¼

Z
S

dvTTdS. (25)

Usual FE assumptions are made as

vðx; tÞ ¼ N _U (26)

and

_eðx; tÞ ¼ B _U, (27)

within each element, where U is the vector of nodal displacements, N is the shape function matrix and B is the
strain–displacement matrix.

Standard FE procedures for small strain leads to the incremental equation,Z
V

BTDrdV ¼

Z
S

NTDTdS. (28)

With the use of Eq. (18), Eq. (28) becomes,Z
V

BTðC0Deþ DrRÞdV ¼

Z
S

NTDTdS, (29)

which, in turn, can be written asZ
V

BTC0BDUdV þ

Z
V

BTDrRdV ¼

Z
S

NTDTdS, (30)

or

KDU ¼ DF� Dv, (31)

where K ¼
R

V
BTC0BdV , is the global stiffness matrix. The first term on the right-hand side of Eq. (31)

is the vector containing the external load increments, and Dv is the time-dependent contribution due to
viscoelasticity.
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2.3. Unit cell technique

One of the objectives of this work is to determine the effective damping factor tan dc of a microstructured
material. To this end a unit cell technique is employed. The unit cell, which in principle may represent any
microstructure, is subjected to special boundary conditions that ensure that ‘‘straight edges remain straight’’.
The Rayleigh–Ritz technique used to implement these boundary conditions are as outlined in Ref. [25], while
more general periodic boundary conditions have been given in Refs. [26,27]. Though the above formulation
does not restrict the morphology of the composite, in this preliminary analysis we adopt a square arrangement
of cylindrical inclusions with cross-section as shown in Fig. 2(a). In view of the reflective and translational
symmetries, the shaded unit cell can be simplified to the one shown in Fig. 2(b). Note that symmetry boundary
conditions are imposed on the edges x1 ¼ 0 and x2 ¼ 0. Results presented in the next section all pertain to this
particular morphology. The unit cell is subjected to (see Fig. 2(b)) uniform normal macrostresses,

S1ðtÞ ¼
1

H

Z H

0

s11ðtÞdx2 and S2ðtÞ ¼
1

B

Z B

0

s22ðtÞdx1, (32)

where sijðtÞ are microstresses. The tan dc can be obtained in the following way. Consider a macrostress state
S2ðtÞ ¼ 0 and S1ðtÞ ¼ S0 sinot. Then for a viscoelastic material, the macrostrain response �̄1 is given by

�̄1 ¼
1

BH

Z
V

�11ðtÞdV , (33)

lags the macrostress by a time Dt as shown in Fig. 2(c). When tb the largest relaxation time the effective
damping factor becomes,

tan dc
¼ tanðoDtÞ. (34)

Four noded quadrilateral elements are used to model the unit cells in all cases reported. Further details of the
Rayleigh–Ritz technique adopted are given in Appendix A.
Fig. 2. Schematic diagrams showing (a) the square arrangement of cylindrical inclusions and the unit cell. The domain analysed by FEM

is shown in (b). The effective tan dc is calculated from the phase difference between the macrostress and macrostrain responses as shown

in (c).
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3. Results and discussion

In this section, we analyse composites with viscoelastic matrices and elastic or viscoelastic inclusions using
the FE technique outlined above. The objective of the results presented hereafter is to provide a ‘proof of
concept’ of the fact that the damping response of a composite can be ‘designed’ appropriately by a suitable
choice of viscoelastic material properties of the constituents.

In particular, we demonstrate that, by adding suitable inclusions in a matrix, it is possible in principle to
modify its damping response to be high over a wide frequency range. To this end, the simple microstructure
described in Section 2.3 will be used.

Since our purpose is to provide a ‘proof of concept’, we use the standard linear solid (SLS) with a one term
Prony series representation, EðtÞ ¼ E1 þ E1e

�t=r1 (see Eq. (12)).
In this work, the superscript ‘m’ is used to denote matrix quantities and ‘c’ for effective quantities pertaining

to the composite. Superscript ‘p1’, ‘p2’, etc. are used for the reinforcing phases. Thus, Prony series representa-

tions of the moduli of the matrix, first phase and second phase of the composite are EmðtÞ ¼ Em
1 þ Em

1 e
�t=rm

1 ,

Ep1ðtÞ ¼ Ep1
1 þ E

p1
1 e�t=rp1

1 , and Ep2ðtÞ ¼ Ep2
1 þ E

p2
1 e�t=rp2

1 whereas that for tan d are tan dm, tan dp1 and tan dp2 ,

respectively. For the composite, the effective tan d is denoted by tan dc.

3.1. Effective damping response of composites

For a SLS having modulus of the form EðtÞ ¼ E1 þ E1e
�t=r1 , a simple calculation shows that the maximum

attainable tan d is 0:5ðR2 þ RÞ�1=2, which is achieved at a frequency of
ffiffiffiffiffiffiffi
ðRÞ

p
=ð2pr1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ RÞ

p
ÞHz, where

R ¼ E1=E1.
The approximate response of this SLS, when reinforced with inclusions can be obtained by applying the

correspondence principle to the Voigt or Reuss estimates for the effective moduli. More sophisticated
homogenization schemes are also available [19,20]. Thus, applying the correspondence principle to the Voigt
estimate, for a two-phase composite, the tan dc is given by

tan dc
¼ vp1 tan dp1 þ vm E 0m

E 0p1
tan dm

� ��
vp1 þ

E0m

E0p1
vm

� �
, (35)

where vp1 , vm and E0p1 , E0m volume fractions and storage moduli of inclusion and matrix, respectively. For
SLS, E0p1 and E0m can be expressed as

E0p1 ¼ Ep1
1 þ E

p1
1

o2ðrp1
1 Þ

2

1þ o2ðrp1
1 Þ

2

and

E0m ¼ Em
1 þ Em

1

o2ðrm
1 Þ

2

1þ o2ðrm
1 Þ

2
,

respectively. Using the above estimate, the tan dc response is plotted for a particular pair of viscoelastic
materials in Fig. 3, where it is clear that the peaks of the tan dc vs. o response now occurs at two values of o
instead of one. For comparison, the estimate of tan dc based on a closer estimate for the moduli of a composite
with unidirectional fibres running in the out-of-plane direction (as shown in Table 8.1 of Ref. [29]) is also
shown with dashed lines. Even from this more exact estimate, two peaks do appear in the tan dc response
though the height of the peaks are different from the Voigt estimate. The location of the peaks in frequency is
same in the two estimates.

However, if the added inclusions are elastic (i.e. E
p1
1 ¼ 0), always tan dcp tan dm. This is demonstrated in

Fig. 4 on the basis of the Voigt estimate. We now define a quantity a as

a ¼
maxðtan dc

Þ

maxðtan dm
Þ
. (36)
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Fig. 3. Voigt estimate for two phase viscoelastic composite, with EmðtÞ ¼ 1þ 15e�t=0:001 Mpa and Ep1 ðtÞ ¼ 1þ 10e�t=0:1 Mpa, vp1 ¼ 0:3
(solid curve) and a more exact estimate (dashed curve) based on application of correspondence principle to the effective moduli given in

Table 8.1 of Ref. [29]. Peaks occur almost at same frequencies in both cases.

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6
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1

α

Fig. 4. Variation of a ¼ maxðtan dc
Þ=maxðtan dm

Þ with volume fraction vp1 of two phase viscoelastic–elastic composites as obtained from

simple Voigt estimate.
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In Fig. 4, the variation of a has been plotted against vp1 . The maximum damping achievable in the composite
for Ep1

1a0 is always lower than that of the matrix. In fact, with increase in vp1 and Ep1
1, a drops significantly

below unity. Also when E
p1
1 ¼ 0, Eq. (35) shows only one peak instead of two.

To achieve a41 we need to use viscoelastic inclusions, i.e. E
p1
1 a0. This is demonstrated in Fig. 5 where

again a has been plotted against Em
1 =E

p1
1 for a viscoelastic–viscoelastic composite. Clearly, according to the

Voigt estimate, for Em
1 =E

p1
1 t1:5; a41 is achievable. Thus Figs. 4 and 5 demonstrate that achieving high

damping capacity and stiffness are somewhat contradictory objectives. While elastic inclusions help us to
achieve the latter, they are rather ineffective as damping enhancers [28].
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Fig. 6. Variation of effective tan dc with o for composites with 30% volume fraction of elastic inclusions ðEp1
1 ¼ 100MPaÞ and 30% of

void ðEp1
1 ¼ 0MPaÞ.
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3.2. Modulation of the tan d vs. o response of composites

We now turn to the results of actual FEM unit cell calculations where a square arrangement of cylindrical
inclusions has been used. Fig. 6 shows the tan d� o response of the matrix with EmðtÞ ¼ 1þ 2e�t=0:1 MPa and
Poisson’s ratio nm ¼ 0:33. Expectedly, tan dm peaks at a frequency of o ¼ 0:9Hz and maxðtan dm

Þ ¼ 0:5773. It
should be noted that the Poisson’s ratio chosen represents a glassy polymer and a polymer in the rubbery
regime has Poisson’s ratio of 0.5.

Addition of elastic inclusions with Ep1
1 ¼ 100MPa and np1 ¼ 0:33, again expectedly causes maxðtan dc

Þ to
drop. On the other hand if 30% of the composite is voided (continuous curve in Fig. 6), there is almost no
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modification of the maxðtan dc
Þ value over maxðtan dm

Þ. These results are in keeping with the predictions
presented on the basis of the simple Voigt estimates.

The product of the stiffness jEcj ¼ jE 0c þ iE00cj (E0c and E00c are the storage and loss moduli of the
composite) and tan dc has been plotted in Fig. 7. Lakes [28] considers this quantity to be a proper figure of
merit for damping materials. Fig. 7 shows that jEcj tan dc is much higher for the composite with elastic
inclusions, compared to the matrix. This figure underlines the beneficial effect of using elastic inclusions as a
means of achieving a judicious compromise between stiffness and damping properties. However, elastic
inclusions are not considered further in this paper as they are ineffective in flattening the tan dc response.

Shape of the inclusions however, has a significant effect on tan dc. The effect of variation in tan dc with
shape is obviously not captured by the simple Voigt model (see Figs. 3–5). A somewhat better idea about the
effect of shape is afforded by Fig. 8, where tan dc is presented as a function of vp1 for different shapes of
inclusions. The results are obtained from unit cell simulations using the four morphologies shown in the inset.
Cross-sections of inclusions which are more elongated along the direction of loading (i.e. x1) give the highest
tan dc. On the other hand, cross-sections of the inclusions that are elongated in a direction perpendicular to the
load yield the least tan dc values. Thus for elliptical inclusions (d) shows a much lower tan dc than (c).

From the discussion above, it is clear that elastic inclusions (or voids) are not very beneficial in modifying
the damping of the composite. Shape and morphology control, (to an extent more sophisticated than what is
attempted here) may lead to somewhat improved tan dc. However, widening of the tan dc

� o response is not
possible by controlling only the shape or the elastic properties of the inclusions. This view is supported both by
detailed FEM calculations as well as by simple Voigt estimates of tan dc.

The principle of flattening the tan dc
� o response is simple and is demonstrated here. Fig. 9 shows the

responses of the matrix and composites. The matrix properties are EmðtÞ ¼ 1þ 2e�t=0:1 Mpa (same as in Fig. 6)
while the inclusions have Ep1 ðtÞ ¼ 1þ 30e�t=0:0005 MPa. Note that in the example chosen, rm

1 =r
p1
1 ¼ 200.

Simple calculation shows that the frequency corresponding to the tan d peak for the matrix occurs at om ¼

0:9Hz and for inclusion at op1 ¼ 57Hz. The tan dc
� o response of the composite with vp1 ¼ 0:3 exhibits two

distinct peaks at oc
1 ¼ 1Hz and oc

2 ¼ 40Hz. This is due to the fact that rm and rp1 are spaced such that
j1=rm � 1=rp1 jbbandwidth of either the matrix or the inclusion. If this condition is not satisfied, two distinct
peaks do not result.

The flattening of the response in Fig. 9 can be achieved by adding sufficient volume fraction of a third phase
with a relaxation time rp2 such that,

rp1prp2prm. (37)
0

2

4

6

8

10

|E
c | t

an
 δ

c  (
M

Pa
)

10-2 10-1 100 101 102

ω(Hz)

Fig. 7. Variation of jEcj tan dc with o of composites with 30% volume fraction of elastic inclusions ðEp1
1 ¼ 100MPaÞ and 30% of voids

ðEp1
1 ¼ 0MPaÞ.
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also shown.
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To demonstrate this, we have used a coating of a third material on the inclusion. The coating has properties
Ep2ðtÞ ¼ 1þ 20e�t=0:005 Mpa and vp2 ¼ 0:25 where rp2 is in accordance with Eq. (37). The coating may
represent the interphase region that exists between inclusion and matrix in polymeric composites [19].
Addition of the coating leads to a flatter response of tan dc shown in Fig. 9. Thus, by using a 3-phase
viscoelastic composite, a reasonably flat tan dc response is obtained over the 1–100Hz frequency range with
a sacrifice in peak value in the range of 5%. The flatness is achieved primarily by spacing the relaxation
times of the constituents appropriately. Further the volume fractions and thus morphology also need to be
adjusted.

In principle, flatness of tan dc over a larger frequency range can also be achieved by this technique. This
can be done by simply using multiphase materials (e.g. a graded IPN) with a wide range of relaxation times.
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Fig. 10. Variation of tan dc with o for a viscoelastic composite with layered inclusions. The tan dm vs. o response of the matrix is also

shown.

R.K. Patel et al. / Journal of Sound and Vibration 303 (2007) 753–766764
In Fig. 10 we show the results obtained for a fictitious composite material that has inclusions with graded
relaxation times. Here we demonstrate the first attempts at morphology control to achieve a flat tan dc

response over a large frequency range. In this figure three additional phases have been used. These phases are
arranged in concentric circles around phase p1. All these four phases have almost similar moduli but their
relaxation times range from 10�5 to 10�2 s. The matrix properties remain the same as in Figs. 6 and 9. The
response obtained for this multiphase composite is reasonably high over the range 1–104 Hz. The flatness of
the curve over this entire range however cannot be ensured without optimizing the volume fractions vpn and
moduli E

pn
1 of the phases. We are currently working on a systematic procedure for performing this

optimization.

4. Conclusion

In this work a unit cell based FE procedure for determining the effective tan dc response of multiphase
composite materials is proposed.

The procedure is applied to the determination of tan dc for simple morphologies of polymeric composites
with SLS constituents. In the process it is demonstrated that by judiciously choosing the viscoelastic
constituents and their morphology, a flat tan dc vs. o response can be obtained over a wide frequency range. In
particular, inclusions with multiple layers having different relaxation times are seen to be especially suitable
for modulating the tan dc response.

Appendix A

In this appendix the Rayleigh–Ritz procedure for the application of periodic boundary conditions on the
unit cell shown in Fig. 2(b) have been described. The procedure adopted in this work is basically similar to that
described in Ref. [25] and is included here for completeness.

The macrostress state R applied on the unit cell is assumed to be a principal stress state and hence the edges
of the unit cell remain straight during deformation. Using reflection symmetry on the square lattice, only
quarter of the unit cell needs to be analysed subject to the condition that

S1ðtÞ ¼
1

V

Z
V

s11 dV ¼
1

H

Z H

0

s11 dx2
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and

S2ðtÞ ¼
1

V

Z
V

s22 dV ¼
1

B

Z B

0

ss22 dx1, (38)

where r is the microstress inside the unit cell domain.
The boundaries of the unit cell are maintained straight subject to satisfaction of Eq. (38) by the following

technique.
The total vector DU of nodal displacement in Eq. (31) can be partitioned as

DU ¼ ½DuI ;DuII ;Dw�T, (39)

where DuI contains the horizontal nodal displacement increments along x1 ¼ H (all such displacements
increments have magnitude DUI ), while the vector DuII contains the vertical nodal displacement increments
along x2 ¼ B (all having magnitude DUII ) as shown in Fig. 2(b). The vector Dw contains all remaining nodal
displacement increments. The Rayleigh–Ritz procedure basically determines the magnitudes DUI and DUII

from the conditions that the corresponding average macrostresses in x1 and x2 directions retain specified
values S1ðtÞ and S2ðtÞ, which are in our case sinusoidally varying with time and zero respectively.

To this end, three trial solutions are performed at each time step of the solution procedure, i.e. solution to
Eq. (31) is obtained by the following procedure:
1.
 A unit incremental displacement is given along x1 ¼ H, with DF ¼ Dv ¼ 0. The result of this exercise is a
displacement vector DU1.
2.
 A unit incremental displacement is given along x2 ¼ B, with DF ¼ Dv ¼ 0. The result of this exercise is a
displacement vector DU2.
3.
 The vertical displacement along x1 ¼ H and the horizontal displacement along x2 ¼ B are held at zero
while Eq. (31) are solved with Dv. The result of this exercise is a third displacement vector DU3.

The final solution can then be written as

DU ¼
X3
i¼1

aiDUi, (40)

where a1 � DUI , a2 � DUII , and a3 � 1. Substituting DU in Eq. (31),

X3
j¼1

ajKDUj ¼ DF� Dv (41)

and premultiplying the above equation by DUi gives a system of linear equations in ai,

X3
j¼1

rijaj ¼ Df i � bi, (42)

where rij ¼ DUT
i KDUj, Df i ¼ DUT

i DF and bi ¼ DUT
i Dv. Rewriting above equation in matrix form

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75

DUI

DUII

1

2
64

3
75 ¼

Df 1

Df 2

Df 3

2
64

3
75�

b1

b2

b3

2
64

3
75, (43)

where Df 1 ¼ DS1A, Df 2 ¼ DS2B, and Df 3 ¼ 0. Now above equation can be solved for DUI and DUII , and
final displacement increment can be obtained from Eq. (40).
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